1.中山大学电子与信息工程学院,广东 广州 510006
2.中山大学电子与通信息工程学院,广东 深圳 518000
[ "何曙明(1992‒),女,博士研究生,研究方向:无源定位、阵列信号处理。" ]
[ "姜园(1970‒),男,博士,教授,博士生导师,研究方向:认知通信、卫星通信网络及其在无线通信系统中的应用。" ]
扫 描 看 全 文
何曙明, 姜园. 基于Chan氏算法和牛顿法的组合TDOA定位算法[J]. 新一代信息技术, 2022, 5(9): 07-11
HE Shu-ming, JIANG Yuan. A Combined TDOA Localization Algorithm Based on Chan Algorithm and Newton's Method[J]. New Generation of Information Technology, 2022, 5(9): 07-11
何曙明, 姜园. 基于Chan氏算法和牛顿法的组合TDOA定位算法[J]. 新一代信息技术, 2022, 5(9): 07-11 DOI: 10.3969/j.issn.2096-6091.2022.09.002.
HE Shu-ming, JIANG Yuan. A Combined TDOA Localization Algorithm Based on Chan Algorithm and Newton's Method[J]. New Generation of Information Technology, 2022, 5(9): 07-11 DOI: 10.3969/j.issn.2096-6091.2022.09.002.
针对无源时差(Time Difference Of Arrival,TDOA)定位系统中传统闭式解法定位精度不够、牛顿迭代法在初始值较差时易发散的问题,本文提出了一种基于Chan氏算法和牛顿法的组合TDOA定位算法。该算法在牛顿法的基础上,通过判断海森矩阵行列式的值是否为零将Chan氏算法和牛顿法结合起来,当行列式的值为零时海森矩阵奇异,新算法退化成Chan氏算法。仿真结果表明,当噪声功率较低时,新的组合算法可以和牛顿法一样具有较好的定位性能;当噪声功率较高时,新算法依然可以输出一个较为精准的定位结果,有效地避免了牛顿法中的发散问题。
Aiming at the problems that the traditional closed-form solution method in the passive time difference of arrival (TDOA) localization system is not accurate enough for localization and the Newton’s method is prone to divergence when the initial value is poor, this paper proposes a combined TDOA localization algorithm based on Chan algorithm and Newton’s method. The algorithm combines Chan algorithm with Newton’s method by determining whether the value of the determinant of the Hessian matrix is zero, and when the value of the determinant is zero, the Hessian matrix is singular and the new algorithm degenerates to Chan algorithm. The simulation results show that when the noise power is low, the new combined algorithm can get the position accuracy as good as Newton’s method; when the noise power is high, the new algorithm can still output an accurate localization result, which avoids the divergence problem in Newton’s method effectively.
无源定位到达时间差加权最小二乘牛顿法海森矩阵克拉美罗界
passive positioningtime difference of arrival (TDOA)weighted least squares (WLS)Newton’s methodHessian matrixCramér-Rao bound (CRB)
JIANG M, NIU R, BLUM R S. Bayesian target location and velocity estimation for multiple-input multiple-output radar[J]. IET Radar, Sonar & Navigation, 2011, 5(6): 666-670.
FLÜCKIGER M, NEILD A, Nelson B J. Optimization of receiver arrangements for passive emitter localization methods[J]. Ultrasonics, 2012, 52(3): 447-455.
ZHAO K, ZHAO T T, ZHENG Z Q, et al. Optimization of time synchronization and algorithms with TDOA based indoor positioning technique for Internet of Things[J]. Sensors (Basel, Switzerland), 2020, 20(22): 6513.
GHOLAMI M, CAI N, BRENNAN R W. Evaluating alternative approaches to mobile object localization in wireless sensor networks with passive architecture[J]. Computers in Industry, 2012, 63(9): 941-947.
ANNIBALE P, FILOS J, NAYLOR P A, et al. TDOA-based speed of sound estimation for air temperature and room geometry inference[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2013, 21(2): 234-246.
CHEUNG K W, SO H C. A multidimensional scaling framework for mobile location using time-of-arrival measurements[J]. IEEE Transactions on Signal Processing, 2005, 53(2): 460-470.
同非, 王俊, 李红伟. Memetic优化的外辐射源雷达方位-多普勒定位方法[J]. 西安电子科技大学学报, 2012, 39(4): 46-51, 102.
CHAN Y T, HO K C. A simple and efficient estimator for hyperbolic location[J]. IEEE Transactions on Signal Processing, 1994, 42(8): 1905-1915.
WANG Y, HO K C. TDOA source localization in the presence of synchronization clock bias and sensor position errors[J]. IEEE Transactions on Signal Processing, 2013, 61(18): 4532-4544.
朱国辉, 冯大政, 周延. 一种利用多运动接收站的时差定位算法[J]. 西安电子科技大学学报, 2015, 42(2): 35-39, 76.
KOVAVISARUCH L, HO K C. Modified Taylor-series method for source and receiver localization using TDOA measurements with erroneous receiver positions[C]//2005 IEEE International Symposium on Circuits and Systems (ISCAS). Kobe: IEEE, 2005: 2295-2298.
YU H G, HUANG G M, GAO J, et al. An efficient constrained weighted least squares algorithm for moving source location using TDOA and FDOA measurements[J]. IEEE Transactions on Wireless Communications, 2012, 11(1): 44-47.
房嘉奇, 冯大政, 李进. TDOA中的修正牛顿及泰勒级数方法[J]. 西安电子科技大学学报, 2016, 43(6): 27-33.
0
浏览量
4
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构