1.广州市数字政府运营中心,广东广州 511348
2.中国移动通信集团广东有限公司广州分公司,广东广州 510000
3.暨南大学信息科学技术学院,广东广州510632
[ "黄庆 (1975-),女,高级工程师,在广州市数字政府运营中心工作。研究方向:云计算、大数据、网络通信、数字政府。" ]
[ "罗志敏 (1979-),男,硕士研究生,研究方向:计算机应用技术、图像处理、人工智能。" ]
[ "李杰 (1991-),男,博士研究生,研究方向:云计算、数据管理、资源调度等。" ]
扫 描 看 全 文
黄庆,罗志敏,李杰.面向业务负载的高效能云数据中心系统设计[J].新一代信息技术,
Huang Qing,Luo Zhimin,Li Jie.High-efficiency cloud data center system design for business workloads[J].New Generation of Information Technology,
黄庆,罗志敏,李杰.面向业务负载的高效能云数据中心系统设计[J].新一代信息技术, DOI:10.3969/j.issn.2096-6091.XXXX.XX.001.
Huang Qing,Luo Zhimin,Li Jie.High-efficiency cloud data center system design for business workloads[J].New Generation of Information Technology, DOI:10.3969/j.issn.2096-6091.XXXX.XX.001.
云数据中心不合理的业务负载调度和资源分配不仅会导致硬件资源利用率低,而且会引起IT设备的局部热点,这会降低IT设备的可靠性,同时增加云数据中心制冷系统的能量消耗。本文设计了一种面向业务负载的高效能云数据中心系统。该系统统筹管理IT设备、制冷设备及供配电设备,构建云数据中心的能耗模型,通过合理的业务负载调度和资源管理,在有限的云数据中心资源下,提高IT设备的资源利用率并降低云数据中心的能量消耗。
Unreasonable business workload scheduling and resource allocation in cloud data centers not only lead to low hardware resource utilization but also cause local hotspots in IT equipment, which can reduce the reliability of IT equipment and increase the energy consumption of the cooling system in cloud data centers. In this paper, we design a high-efficiency cloud data center system for business workload. The system integrates the management of IT equipment, cooling equipment, and power supply and distribution equipment, builds a power consumption model for cloud data centers, improves the resource utilization of IT equipment, and reduces the energy consumption of cloud data centers under the limited cloud data center resources through reasonable business workload scheduling and resource management.
业务负载云数据中心资源调度能耗优化
business workloadscloud data centersresource schedulingoptimizing energy consumption
汪昊.能耗感知的数据中心负载均衡策略的研究与实现[D].东南大学,2018.
http://webadmin.wwfchina.org/storage/files/http://webadmin.wwfchina.org/storage/files/.
王继业, 周碧玉, 张法, 等. 数据中心能耗模型及能效算法综述[J]. 计算机研究与发展, 2019, 56(8): 1587-1603.
https://www.gov.cn/zhengce/202107/16/content_5625389.htm?eqid=e9ba159a00054dda0000000364589f2chttps://www.gov.cn/zhengce/202107/16/content_5625389.htm?eqid=e9ba159a00054dda0000000364589f2c.
Dayarathna M, Wen Y, Fan R. Data center energy consumption modeling: A survey[J]. IEEE Communications Surveys & Tutorials, 2015, 18(1): 732-794.
Lin W, Shi F, Wu W, et al. A taxonomy and survey of power models and power modeling for cloud servers[J]. ACM Computing Surveys (CSUR), 2020, 53(5): 1-41.
阮顺领, 卢才武. 虚拟化数据中心全局能耗优化调度方法[J]. 计算机工程, 2013, 39(12): 303-307.
Wang J, Yu J, Zhai R, et al. GMPR: a two-phase heuristic algorithm for virtual machine placement in large-scale cloud data centers[J]. IEEE Systems Journal, 2022.
Feng H, Deng Y, Zhou Y, et al. Towards Heat-Recirculation-Aware Virtual Machine Placement in Data Centers[J]. IEEE Transactions on Network and Service Management, 2021, 19(1): 256-270.
Li X, Garraghan P, Jiang X, et al. Holistic virtual machine scheduling in cloud datacenters towards minimizing total energy[J]. IEEE Transactions on Parallel and Distributed Systems, 2017, 29(6): 1317-1331.
Gao J. Machine learning applications for data center optimization[J]. Machine Intelligence, 2014.
Li J, Deng Y, Zhou Y, et al. Towards thermal-aware workload distribution in cloud data centers based on failure models[J]. IEEE Transactions on Computers, 2022, 72(2): 586-599.
张徐东.高效能数据中心能耗数据实时采集系统设计与实现[D].中国科学院大学,2020.
Fan X, Weber W D, Barroso L A. Power provisioning for a warehouse-sized computer[J]. ACM SIGARCH computer architecture news, 2007, 35(2): 13-23.
Zhang W, Wen Y, Wong Y W, et al. Towards joint optimization over ICT and cooling systems in data centre: A survey[J]. IEEE Communications Surveys & Tutorials, 2016, 18(3): 1596-1616.
Feng H, Deng Y, Li J. A global-energy-aware virtual machine placement strategy for cloud data centers[J]. Journal of Systems Architecture, 2021, 116: 1020.
0
浏览量
8
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构