浏览全部资源
扫码关注微信
中国工业互联网研究院,北京 100015
[ "郑若楠 (1995—),女,现为中国工业互联网研究院标准化研究所博士。主要研究方向为数字化转型及信创等。E-mail: zhengruonan@china-aii.com" ]
纸质出版日期:2024-01-25,
移动端阅览
郑若楠. 数字孪生技术在工业数字化转型领域的应用进展[J]. 新一代信息技术, 2024, 7(1): 29-35
ZHENG Ruo-nan. Application Progress of Digital Twin Technology in the Field of Industrial Digital Transformation[J]. New Generation of Information Technology, 2024, 7(1): 29-35
郑若楠. 数字孪生技术在工业数字化转型领域的应用进展[J]. 新一代信息技术, 2024, 7(1): 29-35 DOI: 10.3969/j.issn.2096-6091.2024.01.006.
ZHENG Ruo-nan. Application Progress of Digital Twin Technology in the Field of Industrial Digital Transformation[J]. New Generation of Information Technology, 2024, 7(1): 29-35 DOI: 10.3969/j.issn.2096-6091.2024.01.006.
随着数字经济的快速发展,数字孪生凭借其集成性、可交互性逐渐成为工业领域数字化转型的关键技术,能够在整个制造工厂网络基础设施中并行地感知、监视和控制物理设备和生产系统。本文概述了数字孪生的基本特征及发展阶段,探讨了数字孪生技术在行业数字化转型中不同生命周期的实际应用,介绍了Nvidia Omniverse平台的最新进展,并展望了未来的发展趋势。数字孪生将与人工智能加速融合,在数据采集与建模标准化基础上,通过平台的开放式设计形成集成创新,以推动其在工业数字化转型领域的拓展应用。
With the rapid development of the digital economy
the digital twin has gradually become a key technology for digital transformation in the industrial field with its integration and interactivity
which can in parallel sense
monitor and control physical equipment and production systems across the entire manufacturing plant network infrastructure. This paper summarizes the basic characteristics and development stage of digital twin
discusses the practical application of digital twin technology in different life cycles of the industry digital transformation
introduces the latest progress of Nvidia Omniverse platform
and looks forward to the future development trend. Digital twin will accelerate the integration with artificial intelligence
and form integrated innovation through the open design of the platform on the basis of data collection and modeling standardization
in order to promote the application of digital twin in the field of industrial digital transformation.
数字孪生数字化转型生命周期Omniverse平台集成创新
digital twindigital transformationlife cycleOmniverse platformintegrated innovation
TAO F, SUI F Y, LIU A, et al. Digital twin-driven product design framework[J]. International Journal of Production Research, 2019, 57(12): 3935-3953.
Lü Z H, XIE S X. Artificial intelligence in the digital twins: State of the art, challenges, and future research topics[J]. Digital Twin, 2021, 1: 12.
NEGRI E, BERARDI S, FUMAGALLI L, et al. MES-integrated digital twin frameworks[J]. Journal of Manufacturing Systems, 2020, 56: 58-71.
Gartner. Top strategic technology trends[R/OL]. (2023)[2024]. https://emtemp.gcom.cloud/ngw/globalassets/en/publications/documents/2023-gartner-top-strategic-technology-trends-ebook.pdfhttps://emtemp.gcom.cloud/ngw/globalassets/en/publications/documents/2023-gartner-top-strategic-technology-trends-ebook.pdf.
KIM M U. A survey on digital twin in aerospace in the new space era[C]//2022 13th International Conference on Information and Communication Technology Convergence (ICTC). Piscataway: IEEE, 2022: 1735-1737.
乌力吉图, 王佳晖. 工业物联网发展路径: 西门子的平台战略[J]. 南开管理评论, 2021, 24(5): 94-106.
金飞翔, 王康文, 吕刚, 等. 基于数字孪生技术的智能生产线应用探索[J]. 现代制造工程, 2023(2): 18-26.
JIN F X, WANG K W, LÜ G, et al. Exploration of intelligent production line applications based on digital twin technology[J]. Modern Manufacturing Engineering, 2023(2): 18-26. (in Chinese)
SCHROEDER G N, STEINMETZ C, RODRIGUES R N, et al. A methodology for digital twin modeling and deployment for industry 4.0[J]. Proceedings of the IEEE, 2021, 109(4): 556-567.
余忠洋, 高继勋, 郭小波, 等. 基于LoRa的卫星物联网系统接收机同步与非相干软解调方案[J]. 电子学报, 2023, 51(5): 1291-1299.
黄霁崴, 黄方琦, 王皓天, 等. 移动感知的NB-IoT无线电资源配置方法[J]. 电子学报, 2023, 51(4): 801-809.
FONGSAMUT C, KANANGNANON T, JANTARAKONGKUL B, et al. Digital twin in automation industry: Optimal communication protocol[C]//2023 7th International Conference on Information Technology (InCIT). Piscataway: IEEE, 2023: 33-37.
KRITZINGER W, KARNER M, TRAAR G, et al. Digital Twin in manufacturing: A categorical literature review and classification[J]. IFAC-PapersOnLine, 2018, 51(11): 1016-1022.
尚海勇, 刘利强, 齐咏生, 等. 基于数字孪生技术的风电机组建模研究[J]. 太阳能学报, 2023, 44(5): 391-400.
SHANG H Y, LIU L Q, QI Y S, et al. Research on wind turbine modeling based on digital twin technology[J]. Acta Energiae Solaris Sinica, 2023, 44(5): 391-400. (in Chinese)
杨海军, 张弘, 查学刚, 等. 基于TGIS的数字孪生智能综采工作面研究[J]. 中国煤炭, 2023, 49(11): 63-70.
YANG H J, ZHANG H, ZHA X G, et al. Research on digital twin intelligent fully mechanized mining face based on TGIS[J]. China Coal, 2023, 49(11): 63-70. (in Chinese)
LIU Y P, ZHANG K, LI Z H. Application of digital twin and parallel system in automated driving testing[C]//2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence (DTPI). Piscataway: IEEE, 2021: 123-126.
GAO B Q, LIU H Y, SU H L, et al. Design and typical application of digital twin architecture in smart grid[C]//2022 7th Asia Conference on Power and Electrical Engineering (ACPEE). Piscataway: IEEE, 2022: 2140-2144.
陈骞. 国外数字孪生进展与实践[J]. 上海信息化, 2019(1): 78-80.
李长乐, 王硕, 岳文伟, 等. 面向空地一体化交通的虚拟车道: 发展阶段与关键技术[J]. 电子学报, 2022, 50(5): 1255-1265.
刘婷, 张建超, 刘魁. 基于数字孪生的航空发动机全生命周期管理[J]. 航空动力, 2018 (1): 52-56.
0
浏览量
72
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构