浏览全部资源
扫码关注微信
1.中国电子学会,北京 100036
2.中国石油大学(北京)安全与海洋工程学院,北京 102249
[ "张雅妮 (1981—),女,现为中国电子学会高级工程师。研究方向:机器人、新一代信息技术、制造业数字化转型。E-mail: ciezhangyani@163.com" ]
[ "徐曼 (1990—),女,现为中国电子学会高级工程师。研究方向:人工智能、新一代信息技术、数字经济。Email: ciexuman@163.com" ]
纸质出版日期:2023-10-30
移动端阅览
张雅妮, 徐曼, 王懿. 我国生成式人工智能发展进展、问题及建议[J]. 新一代信息技术, 2023, 6(20): 30-33
ZHANG Ya-ni, XU Man, WANG Yi. The Development Progress, Problems and Suggestions of Generative Artificial Intelligence in China[J]. New Generation of Information Technology, 2023, 6(20): 30-33
张雅妮, 徐曼, 王懿. 我国生成式人工智能发展进展、问题及建议[J]. 新一代信息技术, 2023, 6(20): 30-33 DOI: 10.3969/j.issn.2096-6091.2023.20.006.
ZHANG Ya-ni, XU Man, WANG Yi. The Development Progress, Problems and Suggestions of Generative Artificial Intelligence in China[J]. New Generation of Information Technology, 2023, 6(20): 30-33 DOI: 10.3969/j.issn.2096-6091.2023.20.006.
自2022年年末OpenAI推出ChatGPT大模型产品以来,生成式人工智能在全球掀起了创新浪潮。在科研界和产业界共同努力下,我国生成式人工智能创新活跃,呈现出蓬勃发展的良好态势。本文对我国生成式人工智能发展的产品创新、创新生态以及应用场景创新予以分析总结,通过企业调研和专家座谈,判断当前我国与国际领先产品的技术差距,并深入剖析了国内生成式人工智能所面临的难题,其具体包括:存在技术壁垒难以突破、高质量中文数据匮乏、行业间合作不足、评测标准缺失等。据此本文提出了相关的对策和建议,为党和政府的有关决策提供参考。
Since OpenAI launched the ChatGPT big model product at the end of 2022
generative artificial intelligence has sparked a wave of innovation worldwide. With the joint efforts of the scientific research and industry sectors
China’s generative artificial intelligence innovation is active and showing a good trend of vigorous development. This article analyzes and summarizes the product innovation
innovation ecology
and application scenario innovation of China’s generative artificial intelligence development. Through enterprise research and expert discussions
it determines the technological gap between China and internationally leading products
and deeply analyzes the problems faced by domestic generative artificial intelligence
including difficulties in breaking through technological barriers
lack of high-quality Chinese data
lack of industry cooperation
and lack of evaluation standards
propose relevant countermeasures and suggestions to provide reference for the decision-making of the party and the government.
李耕 , 王梓烁 , 何相腾 , 等 . 从ChatGPT到多模态大模型: 现状与未来 [J ] . 中国科学基金 , 2023 , 37 ( 5 ): 724 - 734 .
Nathan Benaich , Air Street Capital . 2023年度人工智能现状报告 [EB/OL ] . ( 2023-08-17 )[ 2023-12-05 ] . https://www.stateof.ai/ https://www.stateof.ai/ .
LIANG J , HUANG W L , XIA F , et al . Code as policies: Language model programs for embodied control [C ] // 2023 IEEE International Conference on Robotics and Automation (ICRA) . Piscataway : IEEE , 2023 .
戴琼海 . 大模型技术: 变革、挑战与机遇 [J ] . 中国科学基金 , 2023 , 37 ( 5 ): 713 .
北京市科委 , 中关村管委会 . 北京市人工智能行业大模型创新应用白皮书 ( 2023 年)[EB/OL ] . ( 2023-11-29 )[ 2023-12-05 ] . https://www.beijing.gov.cn/ywdt/gzdt/202311/P020231129595361731511.pdf https://www.beijing.gov.cn/ywdt/gzdt/202311/P020231129595361731511.pdf .
ZENG A H , LIU X , DU Z X , et al . GLM-130B: An open bilingual pre-trained model [EB/OL ] . ( 2022-10-05 )[ 2023-12-05 ] . http://arxiv.org/abs/2210.02414 http://arxiv.org/abs/2210.02414 .
刘学博 , 户保田 , 陈科海 , 等 . 大模型关键技术与未来发展方向: 从ChatGPT谈起 [J ] . 中国科学基金 , 2023 , 37 ( 5 ): 758 - 766 .
HENDRYCKS D , BURNS C , BASART S , et al . Measuring massive multitask language understanding [EB/OL ] . ( 2020-09-07 )[ 2023-12-05 ] . https://arxiv.org/abs/2009.03300 https://arxiv.org/abs/2009.03300 .
HUANG Y Z , BAI Y Z , ZHU Z H , et al . C-eval: A multi-level multi-discipline Chinese evaluation suite for foundation models [EB/OL ] . ( 2023-05-17 )[ 2023-12-05 ] . http://arxiv.org/abs/2305.08322 http://arxiv.org/abs/2305.08322 .
REI R , STEWART C , FARINHA A C , et al . COMET: A neural framework for MT evaluation [C ] // Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP) . Stroudsburg : Association for Computational Linguistics , 2020 : 2685 - 2702 .
0
浏览量
639
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构