浏览全部资源
扫码关注微信
1.广州市数字政府运营中心,广东广州 511348
2.华南师范大学人工智能学院,广东佛山 528225
3.暨南大学信息科学技术学院,广东广州 510632
[ "路明怀 (1976—),男,高级工程师,在广州市数字政府运营中心工作。主要研究方向为云计算、大数据、数字政府。E-mail: 64404299@qq.com" ]
[ "许阳光 (1998—),男,助理工程师,在广州市数字政府运营中心工作。主要研究方向为云计算、数字政府。E-mail: xvyangguang@gz.gov.cn" ]
[ "王宸 (2002—),男,华南师范大学人工智能学院学生。主要研究方向为云计算、资源管理等。E-mail:2786178563@qq.com" ]
[ "李杰 (1991—),男,博士研究生,现为华南师范大学人工智能学院特聘副研究员、硕士研究生导师。主要研究方向为云计算、数据管理、能耗优化等。E-mail: lijiegxmd11@163.com" ]
纸质出版日期:2024-05-15
移动端阅览
路明怀, 许阳光, 王宸, 等. 云数据中心系统功耗建模及管理优化方法[J]. 新一代信息技术, 2024, 7(5): 26-34
LU Ming-huai, XU Yang-guang, WANG Chen, et al. Cloud Data Center System Power Modeling and Management Optimization Methods[J]. New Generation of Information Technology, 2024, 7(5): 26-34
路明怀, 许阳光, 王宸, 等. 云数据中心系统功耗建模及管理优化方法[J]. 新一代信息技术, 2024, 7(5): 26-34 DOI: 10.12263/newIT.2024.05.005.
LU Ming-huai, XU Yang-guang, WANG Chen, et al. Cloud Data Center System Power Modeling and Management Optimization Methods[J]. New Generation of Information Technology, 2024, 7(5): 26-34 DOI: 10.12263/newIT.2024.05.005.
随着云计算资源需求的日益增长,数据中心的数量和规模也在不断扩大,其巨大的电力消耗已成为一个日益突出的问题。本文旨在全面论述云数据中心系统在不同层次上的功耗建模及管理优化方法,涵盖对物理和虚拟云服务器、制冷系统以及云应用的实例、组件的相关研究。本文具体内容包括以下几个方面:首先,分析服务器层数据功率的收集方法;其次,论述硬件、软件及应用层面的功率模型;接着,介绍常用的系统功耗管理优化方法;最后,总结云数据中心系统在优化能源效率、应对能源消耗和环境问题方面的挑战,并对未来的研究方向做出展望。
With the growing demand for cloud computing and the increasing number and scale of data centres
their huge power consumption has become an increasingly prominent issue. The objective of this paper is to provide a comprehensive overview of the power consumption models and management methods of cloud data centre systems at different levels
covering relevant studies on physical and virtual cloud servers
cooling systems
and examples of cloud applications
components. The specific details of this paper include the following aspects: firstly
the collection methods of data power at the server level are analysed; secondly
the power models of cloud servers and cooling systems at the hardware
software and application levels are reviewed; then
the commonly power management methods for cloud data centre systems are introduced. Finally
the challenges of data centre power management in optimising energy efficiency and addressing energy consumption and environmental issues are discussed
and future research directions are envisaged.
蒋伟进 , 韩裕清 , 吴玉庭 , 等 . 基于边缘计算的环境监测自适应联邦学习算法 [J ] . 电子学报 , 2023 , 51 ( 11 ): 3061 - 3069 .
JIANG W J , HAN Y Q , WU Y T , et al . Federated learning scheme for environmental monitoring based on edge computing [J ] . Acta Electronica Sinica , 2023 , 51 ( 11 ): 3061 - 3069 . (in Chinese)
DAYARATHNA M , WEN Y G , FAN R . Data center energy consumption modeling: A survey [J ] . IEEE Communications Surveys & Tutorials , 2016 , 18 ( 1 ): 732 - 794 .
Varasteh A , Goudarzi M . Server consolidation techniques in virtualized data centers: A survey [J ] . IEEE Systems Journal , 2015 , 11 ( 2 ): 772 - 783 .
刘宏伟 , 黄国瑞 , 白聚莹 , 等 . 风冷精密空调数据中心的能耗分析研究 [J ] . 制冷技术 , 2023 , 43 ( 5 ): 66 - 72 .
LIU H W , HUANG G R , BAI J Y , et al . Energy consumption analysis of data center with air-cooled precision air conditioner [J ] . Chinese Journal of Refrigeration Technology , 2023 , 43 ( 5 ): 66 - 72 . (in Chinese)
黄庆 , 罗志敏 , 李杰 . 面向业务负载的高效能云数据中心系统设计 [J ] . 新一代信息技术 , 2023 ( 15 ): 32 - 38 .
HUANG Q , LUO Z M , LI J . High-efficiency cloud data center system design for business workloads [J ] . New Generation of Information Technology , 2023 ( 15 ): 32 - 38 . (in Chinese)
陈心拓 , 周黎旸 , 张程宾 , 等 . 绿色高能效数据中心散热冷却技术研究现状及发展趋势 [J ] . 中国工程科学 , 2022 , 24 ( 4 ): 94 - 104 .
CHEN X T , ZHOU L Y , ZHANG C B , et al . Research status and future development of cooling technologies for green and energy-efficient data centers [J ] . Strategic Study of CAE , 2022 , 24 ( 4 ): 94 - 104 . (in Chinese)
TOHA T R , RIZVI A S M , NOOR J , et al . Towards greening mapreduce clusters considering both computation energy and cooling energy [J ] . IEEE Transactions on Parallel and Distributed Systems , 2021 , 32 ( 4 ): 931 - 942 .
肖鹏 , 刘洞波 , 屈喜龙 . 云计算中基于能耗比例模型的虚拟机调度算法 [J ] . 电子学报 , 2015 , 43 ( 2 ): 305 - 311 .
XIAO P , LIU D B , QU X L . An virtual machine scheduling algorithm based on energy-consumption ratio model in cloud computing [J ] . Acta Electronica Sinica , 2015 , 43 ( 2 ): 305 - 311 . (in Chinese)
周清 , 张諝晟 , 沈子钰 , 等 . 数据中心内服务器能耗数据采集及特征分析 [J ] . 数据采集与处理 , 2021 , 36 ( 5 ): 986 - 995 .
ZHOU Q , ZHANG X S , SHEN Z Y , et al . Data collection and feature analysis of server energy consumption in data center [J ] . Journal of Data Acquisition and Processing , 2021 , 36 ( 5 ): 986 - 995 . (in Chinese)
LIN W W , WANG H Y , ZHANG Y F , et al . A cloud server energy consumption measurement system for heterogeneous cloud environments [J ] . Information Sciences , 2018 , 468 : 47 - 62 .
LIN J P , LIN W W , HUANG H K , et al . Thermal modeling and thermal-aware energy saving methods for cloud data centers: A review [J ] . IEEE Transactions on Sustainable Computing , 2024 , 9 ( 3 ): 571 - 590 .
LIN W W , SHI F , WU W T , et al . A taxonomy and survey of power models and power modeling for cloud servers [J ] . ACM Computing Surveys , 2021 , 53 ( 5 ): 1 - 41 .
SMITH M , ZHAO L K , CORDOVA J , et al . Energy-efficient GPU-intensive workload scheduling for data centers [C ] // 2023 International Conference on Machine Learning and Applications (ICMLA) . IEEE , 2023 : 1735 - 1740 .
LI J , DENG Y H , ZHOU Y , et al . TADRP: Toward thermal-aware data replica placement in data-intensive data centers [J ] . IEEE Transactions on Network and Service Management , 2023 , 20 ( 4 ): 4397 - 4415 .
胡晋彬 , 黄家玮 , 王建新 , 等 . 基于直接拥塞通告的数据中心无损网络传输控制机制 [J ] . 电子学报 , 2023 , 51 ( 9 ): 2355 - 2365 .
HU J B , HUANG J W , WANG J X , et al . A transmission control mechanism for lossless datacenter network based on direct congestion notification [J ] . Acta Electronica Sinica , 2023 , 51 ( 9 ): 2355 - 2365 . (in Chinese)
COLMANT M , KURPICZ M , FELBER P , et al . Process-level power estimation in VM-based systems [C ] // Proceedings of the Tenth European Conference on Computer Systems . ACM , 2015 : 1 - 14 .
POESS M , OTHAYOTH NAMBIAR R . A power consumption analysis of decision support systems [C ] // Proceedings of the First Joint WOSP/SIPEW International Conference on Performance Engineering . ACM , 2010 : 147 - 152 .
DIOURI M E M , GLÜCK O , MIGNOT J C , et al . Energy estimation for MPI broadcasting algorithms in large scale HPC systems [C ] // Proceedings of the 20th European MPI Users’ Group Meeting . ACM , 2013 : 26 - 33 .
FENG H , DENG Y H , ZHOU Y , et al . Towards heat-recirculation-aware virtual machine placement in data centers [J ] . IEEE Transactions on Network and Service Management , 2022 , 19 ( 1 ): 256 - 270 .
LI J , DENG Y H , ZHOU Y , et al . Towards thermal-aware workload distribution in cloud data centers based on failure models [J ] . IEEE Transactions on Computers , 2023 , 72 ( 2 ): 586 - 599 .
SUNEETHA T , SINGH S , NEERAJA B , et al . Reduced energy consumption in cloud data center using machine learning algorithm load balancing [C ] // 2022 5th International Conference on Contemporary Computing and Informatics (IC3I) . IEEE , 2022 : 1029 - 1034 .
ILAGER S , RAMAMOHANARAO K , BUYYA R . Thermal prediction for efficient energy management of clouds using machine learning [J ] . IEEE Transactions on Parallel and Distributed Systems , 2021 , 32 ( 5 ): 1044 - 1056 .
杨丽娜 , 赵鹏 , 王佩哲 . 基于GRU神经网络的数据中心能耗预测模型研究 [J ] . 电力信息与通信技术 , 2021 , 19 ( 3 ): 10 - 18 .
YANG L N , ZHAO P , WANG P Z . Research on predicting model of energy consumption in data center based on GRU neural network [J ] . Electric Power Information and Communication Technology , 2021 , 19 ( 3 ): 10 - 18 . (in Chinese)
TABRIZCHI H , RAZMARA J , MOSAVI A . Thermal prediction for energy management of clouds using a hybrid model based on CNN and stacking multi-layer bi-directional LSTM [J ] . Energy Reports , 2023 , 9 : 2253 - 2268 .
GILL S S , TULI S , TOOSI A N , et al . ThermoSim: Deep learning based framework for modeling and simulation of thermal-aware resource management for cloud computing environments [J ] . Journal of Systems and Software , 2020 , 166 : 110596 .
CHEN Z Y , HU J , MIN G Y , et al . Adaptive and efficient resource allocation in cloud datacenters using actor-critic deep reinforcement learning [J ] . IEEE Transactions on Parallel and Distributed Systems , 2022 , 33 ( 8 ): 1911 - 1923 .
JI J Z , YU D H , YANG D W , et al . Predictive control based on transformer as surrogate model for cooling system optimization in data center [C ] // 2023 International Conference on Mobile Internet, Cloud Computing and Information Security (MICCIS) . IEEE , 2023 : 36 - 42 .
WANG J Q , DU Y , WANG J . LSTM based long-term energy consumption prediction with periodicity [J ] . Energy , 2020 , 197 : 117197 .
MIRHOSEININEJAD S , MOAZAMIGOODARZI H , BADAWY G , et al . Joint data center cooling and workload management: a thermal-aware approach [J ] . Future Generation Computer Systems , 2020 , 104 : 174 - 186 .
FENG H , DENG Y H , LI J . A global-energy-aware virtual machine placement strategy for cloud data centers [J ] . Journal of Systems Architecture , 2021 , 116 : 102048 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构