LIAN Hong-yu, SHEN Xiang, CHEN Guang-xin, et al. Research on skull defect recognition based on residual neural network[J]. New Generation of Information Technology, 2024, 7(5): 01-05
LIAN Hong-yu, SHEN Xiang, CHEN Guang-xin, et al. Research on skull defect recognition based on residual neural network[J]. New Generation of Information Technology, 2024, 7(5): 01-05 DOI: 10.12263/newIT.2024.05.001.
Research on Skull Defect Recognition Based on Residual Neural Network
CHILAMKURTHY S , GHOSH R , TANAMALA S , et al . Deep learning algorithms for detection of critical findings in head CT scans: A retrospective study [J ] . The Lancet , 2018 , 392 ( 10162 ): 2388 - 2396 .
GOLBIN D A , VECHERIN A V , CHEREKAEV V A , et al . Predictive model for preoperative risk calculation of cerebrospinal fluid leak after resection of midline craniofacial mass lesions [J ] . World Neurosurgery: X , 2023 , 18 : 100163 .
METCALFE D . The pathophysiology of osteoporotic hip fracture [J ] . McGill Journal of Medicine: MJM , 2008 , 11 ( 1 ): 51 .
SHEU A , DIAMOND T . Diagnostic tests: bone mineral density: Testing for osteoporosis [J ] . Australian Prescriber , 2016 , 39 ( 2 ): 35 .
KRUSE C , EIKEN P , VESTERGAARD P . Machine learning principles can improve hip fracture prediction [J ] . Calcified Tissue International , 2017 , 100 : 348 - 360 .
BIVER E , DUROSIER‐IZART C , CHEVALLEY T , et al . Evaluation of radius microstructure and areal bone mineral density improves fracture prediction in postmenopausal women [J ] . Journal of Bone and Mineral Research , 2018 , 33 ( 2 ): 328 - 337 .
LEVI R , GAROLI F , BATTAGLIA M , et al . CT-based radiomics can identify physiological modifications of bone structure related to subjects' age and sex [J ] . La Radiologia Medica , 2023 , 128 ( 6 ): 744 - 754 .
HE K M , ZHANG X Y , REN S Q , et al . Deep residual learning for image recognition [C ] // 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway : IEEE , 2016 : 770 - 778 .
PANTHAKKAN A , ANZAR S M , JAMAL S , et al . Concatenated Xception-ResNet50—A novel hybrid approach for accurate skin cancer prediction [J ] . Computers in Biology and Medicine , 2022 , 150 : 106170 .
XU W , FU Y L , ZHU D . ResNet and its application to medical image processing: Research progress and challenges [J ] . Computer Methods and Programs in Biomedicine , 2023 : 107660 .
HASANAH S A , PRAVITASARI A A , ABDULLAH A S , et al . A deep learning review of resnet architecture for lung disease Identification in CXR Image [J ] . Applied Sciences , 2023 , 13 ( 24 ): 13111 .